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Abstract. In this paper we analyze the variations in line intensities ratios due to a non-equilibrium situation
and to optical depth effects. A four level model is proposed and the two particular situations for the possible
transitions are considered. Electron density and temperature as well as the source thickness are used as
independent parameters to find out in which way and extent they modify the ratios of levels populations
compared with the ideal case of an equilibrium state and optically thin source. Accordingly with the ion
of interest, electron temperatures ranging from I/20 to I/7 eV (I being the ionization energy), whereas
electron densities in the interval from 1014 to 1020 cm−3 will be considered. These ranges are of special
interest for diverse applications such as LIBS and measurement of transition probabilities. Some results
are presented for real ions and a new expression for the escape factor is also proposed for general plasma
conditions.

PACS. 52.25.-b Plasma properties – 52.50.-b Plasma production and heating – 52.70.-m Plasma diagnostic
techniques and instrumentation

1 Introduction

Populations distribution and radiation transport are two
fundamental aspects to be considered in the description
and interpretation of the radiation emitted from spec-
tral sources. These questions arise and are of crucial
importance in many branches of plasma physics, includ-
ing, for example, plasma spectroscopy [1,2], stellar atmo-
spheres [3], the measurement of atomic parameters, such
as transition probabilities and rates, laser physics, etc.
Because of the high degree of complexity of this prob-
lem, it becomes clear that numerical models are to be
used involving a limited number of both, system levels
and ions present in the plasma. These questions have
been addressed by many authors and numerous works
have been published giving answers to particular prob-
lems from which no always other cases of interest can
be inferred. Numerical methods to solve radiation trap-
ping problems include Monte Carlo simulations [4], the
piecewise constant approximation [5], and the propagator
function method [6]. Newer works, [7–9] include other nu-
merical methods. On the other hand, concerning with the
population of energy levels, it is investigated using dif-
ferent approaches and sophisticated codes for atomic cal-
culations [10]. There is no doubt about the validity and
importance of these works but, a simple model containing
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the necessary physics and which can be used reliably is
sometimes mandatory. This is of particular interest when
using Laser Induced Breakdown Spectroscopy (LIBS) [11],
where the spectroscopic data need to be rapidly evaluated
for the determination of pollutants and traces.

The main problem, to be addressed in the present
work, can be stated in the following terms: given the elec-
tron temperature and density, how much does the quo-
tient between the intensities of two lines departures from
the simple formula given for both, Local Thermodynamic
Equilibrium (LTE) and a thin source? In this particular
case, the intensities ratio for two lines p → o, v → u is
given by:

RIeq =
Ipo
Ivu

=
IPeak
po Γpo

IPeak
vu Γvu

=
gpfpoω

3
po

gvfvuω3
vu

exp(βvp), (1)

where g is the level multiplicity, f is the emission oscillator
strength, ω is the emission frequency and the exponent
βvp is defined as βvp = (Ev −Ep) /Θ, being Θ is the elec-
tron temperature measured in energy units. In the above
equation, the line widths are designated by Γ and the peak
intensities by IPeak.

In a previous work [12], a simple (two levels) model was
described considering both, collisional (excitation and de-
excitation) and radiative processes. In that work the pop-
ulations ratio was shown to differ from its LTE expression
by a simple factor, designated as α ≡ α(Ne, T ), which is
a function of the electron density (Ne) and the absolute
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temperature (T ). By using standard notation [13], and la-
beling the levels with the indexes v, u such that Ev > Eu
it results:

Nv
Nu

=
(
gv
gu

)
e−βvu

αvu
, (2)

where αvu ≡ 1 +Av/NeDvu. In this last expression, Av =∑
nAvn, is the total probability of radiative decay from

level |v〉 and Dvu is its de-excitation rate to level |u〉. In
this way, an exact, analytical result was obtained such
that, without the need of introducing the escape factor
(see Sect. 5), the intensities ratio between two lines Ipo/Ivu
is proportional to fpo/fvu for a thin source and to ω3

po/ω
3
vu

for thick sources (black body limit).
Note that, in principle, the comparison between popu-

lation ratios obtained by numerical solution of rate equa-
tions (when available) and simple Boltzmann calculations
permits to assign a numerical value to the coefficient αvu
defined in equation (2). However, its explicit dependence
on Ne and T is obscured by the numerical nature of this
approach. In the present work we propose analytical ex-
pressions for the α’s in terms of rate coefficients. Moreover,
a generalization of those previous results published in [12]
will be presented. Two main aspects will be considered:
(i) the system will consist of four levels: the fundamental
one, two excited levels, and the ionization limit and (ii) all
processes which can induce transitions from or to a given
level will be taken into account.

To this end, this work is divided as follows: first we
demonstrate that, if the populations ratio can be ex-
pressed in the form of equation (2), then the ratio between
peak intensities of the lines is given in terms of a function
of the electron density and temperature. Next, the new
expressions for the α’s coefficients of our model are de-
rived for two cases of interest and finally some results are
graphically shown.

2 General expressions for the line intensities

Let us consider four arbitrary levels, |p〉, |o〉, |v〉 and |u〉,
and two lines, p → o and v → u with intensities denoted
by Ipo and Ivu, respectively. We assume that Ep > Eo and
Ev > Eu always but there are no restrictions between the
states p and v nor between o and u. For a fixed plasma
length, L, the integrated intensity is given by the area
under the curve [14]

Ipo(ω) = C1

ω3
po [1− exp (−κopL)][

gpNo
goNp

− 1
] , (3)

being ωpo the frequency of the line, gp and go the multi-
plicities and Np and No the populations of levels |p〉 and
|o〉, respectively. In equation (3) κop is the absorption co-
efficient, defined by:

κop = C2fopNo

[
1− goNp

gpNo

]
L(ω) = F [C2fopNoL(ω)] ,

(4)

where L(ω) is the line shape and fop is the absorption os-
cillator strength. From these expressions it is easy to deter-
mine that, to first order in κopL, equation (1) is obtained,
with the widely cited corollary that two lines originating
in the same upper level will always maintain the same ra-
tio, a fact that is usually applied for the measurement of
concentrations even though it can be easily violated in the
experiments.

Calling x ≡ κopL, y ≡ κuvL and defining CT ≡ y/x =
κuv/κop, under validity of equation (2) and introducing
two auxiliary functions, namely:

G(α, β) =
[αvu exp(βvu)− 1]
[αpo exp(βpo)− 1]

(5)

and

P (CT , x) ≡ [1− exp(−x)]
[1− exp(−CTx)]

(6)

it follows that

CT =
gvfvu
gpfpo

αpo
αuoαvu

G(α, β) exp(−βvp)

≡ gvfvu
gpfpo

αpvG(α, β) exp(−βvp). (7)

Then, the peak intensities ratio is given by our main result,
namely:

RI =
IPeak
po

IPeak
vu

=
ω3
po

ω3
vu

P (CT , x)G(α, β). (8)

Taking into account equation (1), the general expres-
sion (8) should be compared with that for the ideal con-
dition. Thus, the quotient:

Q =
P (CT , x)G(α, β)
gpfpoΓvu
gvfvuΓpo

exp(βvp)
(9)

gives values near to unity for conditions close to LTE and
optical thinness. On the contrary, departure from one or
both of these ideal conditions are evidenced by Q different
from unity.

Besides, it is interesting to note that CT can take pos-
itive as well as negative values in conditions when κuv or
κop are negative (zone of population inversion).

2.1 General properties and some useful approximations

From equation (8) we see that the variation of the inten-
sities ratio depends basically on both functions P (CT , x)
and G(α, β). Particular cases for equilibrium and/or thin
sources situations can be easily derived. Of special interest
are the first order expansions of P (CT , x); so

P (CT , x� 1) =
1
CT

, (10)
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Nn =
Ne

P
k<nNkEkn +Ne

P
j>nNjDjn +

P
j>nNjAjn +NeN(+)(R(2)

n +NeR(3)
n )

Ne

hP
k<nDnk +

P
j>n Enj + In

i
+
P
k<n Ank

, (15)

whereas

P (CT � 1, x) ≈ (1− e−x)
CTx

≡ P (1)(CT , x). (11)

From equation (8), for thin sources and taking into ac-
count equation (10),

Rthin
I =

ω3
po

ω3
vu

G(α, β)
CT

=
(
ωpo
ωvu

)3
gpfpo
gvfvu

eβvp, (12)

which coincides with equation (1), as it must be expected.
On the other hand, the case for thick sources (black body
limit) is recovered noting that

P (CT , x� 1) = 1

and

Rthick
I =

IPeak
po

IPeak
vu

=
(
ωpo
ωvu

)3 eβvu − 1
eβpo − 1

·

3 The four levels model

The proposed model consists of a total of four levels: the
lower level l (which is going to be taken as the fundamen-
tal one, l ≡ 0), two excited levels n, k and the ionization
limit I. A transition n→ k is assumed to exist always, and
we are going to consider two possible cases: case I which
represents a “cascade” situation and so, besides n→ k, ex-
ists a transition k → l and case II where two lines, n→ k
and n→ l, share the same upper level. It should be noted
that notation has been changed with respect to the more
general treatment of Section 2, where an arbitrary num-
ber of levels could be considered. The levels labeled here
l, n, k, and I are particular cases of the general model.
The correspondence between the two different levels as-
signments is illustrated in Figure 1 together with sketches
of the two cases.

Population distributions will be studied using the
Collisional Radiative Steady State (CRSS) model. This
model is a generalization of the models LTE and Corona
Equilibrium (CE), being these ones the limiting cases
for high and low electron densities, respectively [2]. It
is valid in time dependent processes when the plasma
characteristic time tpl = min(ni/(∂ni/∂t), T/(∂T/∂t)) is
larger than the time scale of atomic processes, that is
tpl � τa = 1/ne〈vσ〉.

There are seven dominating mechanisms that con-
tribute to the population and de-population of the levels:
spontaneous emission, electron impact ionization, three
body recombination, electron impact excitation and de-
excitation, radiative recombination and dielectronic re-
combination. Given the levels |n〉 and |k〉 and, provided

Case I

I

l=0

k

n

I

v

u,p

o

Levels assignement

General Case 4 Levels Model

Case II

I

l=0

k

n

I

v, p

u

o

Levels assignement

General Case 4 Levels Model

Fig. 1. Schematic representation of the proposed four-levels
model showing both cases considered in this work and the re-
assignment of levels accordingly with Section 2.

that En > Ek, the excitation (Ekn) and de-excitation
(Dnk) rates are related by:

gkEkn = gnDnke−∆Enk/Θ, (13)

where ∆Enk ≡ En −Ek.
On the other side, for a given generic level |n〉 (be-

longing to the ionization stage z), the ionization (In) and
three body recombination rates (R(3)

n ) are related by the
well known Saha equation [1]:

In = 2
gz+1

gz

(
mΘ

2π~2

)3/2

e−(Iz−En)/ΘR(3)
n ≡ S(Θ)R(3)

n .

(14)

In the above equation the factors gz and gz+1 are the elec-
tronic partition functions for two ions of consecutive ion-
ization degree. Considering all these processes and when
steady state is achieved, that is when the population and
de-population rates for a given level are equal, the popu-
lation of a generic level |n〉 of ion z can be expressed by:

see equation (15) above

which leads to a system of coupled equations. In the above
expression, R(2)

n is the two-body recombination rate (ra-
diative + dielectronic) while N(+) denotes the population
of the ion z + 1.

Defining

R(2)
n = αR

n + αD
n , αnk ≡ 1 +

Ank
NeDnk

,

αn0 ≡ 1 +
An0

NeDn0

and

α∗nk ≡ αnk
(

1 +
Dn0αn0 + In
Dnkαnk

)
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the ratio Nn/Nk in our model of two excited levels n, k is
given by:

Nn
Nk

=
Ekn

{[
1 + N0

Nk
E0n
Ekn

]
+ N(+)

Nk

R(2)
n +NeR(3)

n

Ekn

}
Dnkα∗nk

·

In this way, if α∗∗nk is defined as

α∗∗nk ≡
α∗nk[

1 + N0
Nk
E0n
Ekn

]
+ N(+)

Nk

R(2)
n +NeR(3)

n

Ekn

and accordingly with equation (13), it follows that

Nn
Nk

=
(Nn/Nk)eq

α∗∗nk
· (16)

Up to this point no approximations have been made. To
evaluate (16), N0/Nk and N(+)/Nk have to be estimated.

Operating in an analogous form as for Nn/Nk and us-
ing the notation:

αk0 = 1 +
Ak0

NeDk0
, α∗k0 ≡ αk0

(
1 +
Ekn + In
Dk0αk0

)
and

α∗∗k0 =
α∗k0[

1 +
NnDnkαnk+N(+)

�
R(2)
k +NeR(3)

k

�

N0E0k

] ,
the ratio N0/Nk is given by:

N0

Nk
= α∗∗k0 (N0/Nk)eq . (17)

For obtaining N(+)/Nk we consider that

N(+)/Nk =
N(+)/N0

Nk/N0
=

I0

(R(2)
0 +NeR(3)

0 )

(Nk/N0)eq
α∗∗k0

·

Finally, Nn/N0 must be evaluated. Clearly, if the com-
plete terms are written, the resulting equations cannot be
uncoupled. Therefore we make here the unique approx-
imation in our model for calculating Nn/N0, namely to
consider that we have a two levels system disregarding
the de-excitation n→ k. Thus, defining

α∗n0 ≡ αn0

(
1 +

In
Dn0αn0

)
; α∗∗n0 =

α∗n0

1 + In/E0n

results

Nn
N0

=
(Nn/N0)eq

α∗∗00

, (18)

being the above equation the only approximated expres-
sion of the model. Its validity is proved since Nn/Nk re-
sults:

Nn
Nk

=
Nn
N0

N0

Nk
(±3%).

In summary, we have shown that in the proposed model,
the populations ratio for any pair of levels can always be
written in terms of the general form of equation (2).

4 Rate equations

In order to calculate the different α coefficients we need
data about the involved rate coefficients which general
expression is related with the cross-section σ(E) and the
electron speed v through:

Rate =
∫ ∞
∆E

vσ(E)F (E)dE.

Here ∆E is the threshold energy of the process and F (E)
is the energy distribution function. Due to the cumber-
some nature of ab initio calculations of cross-sections it is
imperative to use some sort of semi-empirical approxima-
tions in order to arrive to manageable expressions.

In this section, we summarize the formulae employed
in the calculations of our model. For radiative and dielec-
tronic recombinations we will use the formulae given, in
terms of adjustable parameters, in the book by Sobelman
et al. [13].

4.1 Transition probabilities

The values for the Ank (or fnk ≡ 1.5Ankσ−2, being σ the
wave number measured in cm−1) can be obtained from
experimental data or, if these are unknown, from theoret-
ical calculations using the approach Multi-Configurations
Hartree Fock (MCHF) [15]. In our case, both points of
view have been used, taking into account that for strong
transitions both values are in good agreement. The re-
sults were, in practice, independent of this choice. Typical
values for strong lines of neutral atoms are: fnk = 0.4,
σ = 20 000 cm−1 and Ank ≈ 108 s−1. For ionized atoms
and for a similar value of fnk results Ank ∝ Z4.

4.2 Electron impact excitation and de-excitation

A general expression for the rate Ekn useful for both, al-
lowed (fnk 6= 0) and forbidden transitions (fnk = 0) was
formulated by Sobelman et al. [13]. In this case

Ekn ∝
∑
K

QK(k, n)GK(β); β ≡ ∆E/Θ

being QK(k, n) the angular factors and GK(β) a set of
functions tabulated in the book from Sobelman. The sum-
mation index, K (arising from the multipole expansion),
takes values related with the orbital quantum numbers:
K = |lk − ln| ... |lk + ln|.

Typical values for optically allowed lines with tran-
sition energy ∆E can be estimated using the van
Regemorter formula [13]:

Ekn ' 6.4fkn × 10−8

(
Ry

∆E

)3/2

β1/2e−β
[
cm3s−1

]
,

where Ry ≡ 13.6 eV. For a transition with ∆E ≈ 2.5 eV,
fkn ≈ 0.4 and β ≈ 1, results Ekn ≈ 1.2× 10−7 cm3 s−1.
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4.3 Electron impact ionization and recombination

The ionization of a shell containing m electrons, denoted
by n0l

m
0 can be estimated from the widely used formula

due to Lotz [2,13]:

I0 = 4.3m× 10−8

(
Ry

I

)3/2

β1/2 (−Ei(−β))
[
cm3s−1

]
β ≡ Ez/Θ, (19)

where Ry ≡ 13.6 eV, I is the ionization limit and Ei
indicates the exponential integral. Thus, typical values
for neutral atoms with ionization energies in the order of
13 eV and for kT ≈ 2.5 eV are I0 ≈ 10−10 cm3 s−1. The
approximate scaling with the ionization order z is given
by Iz = I0/z

3.

5 Considerations about the escape factors

For an optically thin and homogeneous plasma, the source
conditions can be taken as invariant during the time it
takes light to travel across it. However, for optically thick
plasmas, the light undergoes several processes, such as
scattering, absorption and re-emission, before escaping.
An “escape factor” is defined for taking into account these
processes and to relate them with the thickness of the
source:

χop(κopL) =
∫ ∞
−∞

e−κop(ω)LL(ω)dω, (20)

where L(ω) is the line shape. A classical treatment of es-
cape factors is due to Holstein [1] and a plot of its value
as a function of the source thickness can be found in ref-
erence [16] for the case of a Doppler broadened line. How-
ever, this approach assumes that collisional processes (ex-
citation and de-excitation) are negligible and thus do not
take place in modifying the levels populations [1]. Asymp-
totic values of χop(κopL) are: [κopL(π ln(κopL))1/2]−1 for
Gaussian line shapes and (πκopL)−1/2 for Lorentzian ones.
When the source is thin, the escape factor is ≈ 1.

More recently, Netzer [17] evaluated equation (20) us-
ing numerical methods and found that, within a factor
≤ 3, χop(κopL) can be fitted by the expression:

χNetzer
op (κopL) ≈ 1− exp(−κopL)

κopL

that is equal to (1− e−x) /x in our notation (see Sect. 2).
On the other hand, as seen from equation (8), the in-

tensities ratio is a function of two variables. Thus, condi-
tions close to ideality arise when both x and CT are small
enough. The approximation (11) of equation (6),

P (1)(CT , x) =
1− e−x

CT x
,

0.1 1 10

0.1

1

E
sc
a
p
e
fa
c
to
r

κL

Doppler-broadened

Lorentzian

P C
T

Fig. 2. Escape factors as a function of the (dimensionless)
source thickness, κL, for a Doppler-broadened line (squares),
and Lorentzian line (triangles) compared with the product
CTP (CT , x) (open circles).

is verified when the quotient CT = y/x ≡ κuvL/κopL� 1
(irrespective of their individual values). Thus, it is possible
to identify:

χNetzer
op (κopL) ≈ CTP (1)(CT , x).

Considering the fact that (i) as mentioned above, the clas-
sical approach neglects collisional effects while our func-
tion CTP (CT , x) takes into account both, radiative and
collisional processes, and (ii) as shown in Figure 2, the
curve resulting from it lies between the Gaussian and
Lorentzian limits, it is reasonable to propose

χop(κopL) = CTP (CT , x) (21)

as a good approximation for describing escape factors, re-
gardless of the relative importance between collisional and
radiative processes.

6 Results

Equation (8) summarizes the main result of the present
work in terms of the product:

P (CT , x)G(α, β) =
IPeak
po

IPeak
vu

ω3
vu

ω3
po

,

since it basically represents the peak intensities ratio as
a function of the parameters Ne, T . Additionally we have
also obtained the absorption coefficients in terms of equa-
tion (4) and thus the regions where population inversion is
possible. As stated in Section 3 two cases were considered:
case I, where the existing transitions are n→ k, k → 0 and
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case II for transitions with the same upper level, that is:
n→ k, n→ 0.

Case I corresponds e.g., to transitions of the type
6p → (5d + 6s), (5d + 6s) → 5pn in noble gases present-
ing several grades of ionization, such as Xe+ and Xe3+.
Case II is found, for example, for transitions 3s−3p (5 801
and 5 812 Å) and 2s−3p (312 Å) belonging to the ion C3+

and also in Xe+ for lines with λ = 4 844 Å and λ = 5 460 Å
corresponding to transitions 6s−6p.

For both cases the electronic temperature T and the
electronic density of the plasma Ne, were used as pa-
rameters. Typical ranges for them were: 1014 cm−3 <
Ne < 1020 cm−3 and I/20 < kT < I/7. In all cases
the lowering of the ionization level (∆I) was taken into
account accordingly with the equation mentioned in the
book by Griem [1]. If energy is measured in eV, a0 is
the Bohr radius (5.3 × 10−9 cm), ρD is the Debye radius
(≈ 740

√
kT/Ne) and Zc is the spectroscopic symbol, then

∆I is taken as: ∆I = 27.2 (Zc − 1) a0ρD. To illustrate the
model’s behavior for different source thicknesses, the pa-
rameter x = κL (defined in terms of the absorption in
Sect. 2) was set to different values. Even when the absorp-
tion κ is a function of the plasma conditions, and must be
computed for each pair (Ne, kT ) in terms of equation (4),
there is still a free parameter, namely the source length,
L, which can be used to control the source thickness. So,
there is no loss of generality in considering x as a free
parameter in the calculus.

For each case the quotient Q between the real inten-
sities ratio of two lines, P (CT , x)G(α, β), and the ideal
intensities ratio (in the limits of optically thin source and
LTE) were calculated as indicated in equation (9). They
are a measurement of the degree of ideality (LTE and thin
source) of the system for each pair (Ne, kT ): Q ∼ 1 indi-
cates nearly ideal conditions.

Two practical uses of this formalism in our laboratory
are: (i) the measurement of relative emission oscillator
strengths (fij) deduced from the line intensities [21–23]:

gpfpo
gvfvu

= P (CT , x)G(α, β) exp(βpv)
Γpo
Γuv

,

and (ii) knowing the fij , the determination of relative con-
centrations, of interest in applied spectroscopy. The first
step in this process is the verification of the source thin-
ness by comparison of the relative intensities of two lines
arising from a common upper level. Using the formalism
developed in this work, a 3 dimensional plot similar to our
Figures 3a or 3b is obtained, from which the departure
from ideal conditions can be deduced. Figure 3a corre-
sponds to case I for an ideally thin source with x = 10−4.
Calculations were made using the ion parameters (energy
levels, levels multiplicities, ionization potential, etc.) of
Xe+. For this ion, LTE is expected in the surface delimited
by 1016 cm−3 < Ne < 1018 cm−3 and 2 eV < kT < 3 eV;
in this zone Q ∼ 1. For densities higher than 1018 cm−3,
and even in the case of a thin source, effects due to lower-
ing of the ionization limit are important (> 10%). In this
region Q trends approximately to 0.6 instead of reaching
the value of 1, as it should be expected on the basis of equi-
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Fig. 3. (a) Plot of Q (case I), as defined in equation (9) for
the ion Xe+ and for a thin source (x ≡ κL = 10−4). (b) Plot
of Q (case I), as defined in equation (9) for the ion Xe+ and
for a thick source (x ≡ κL = 1).

librium considerations. However, some interesting applica-
tions such as LIBS are considered for Ne ≤ 1018 cm−3. For
the sake of comparison the case of x = 1 can be seen in
Figure 3b showing a similar behavior but with Q lowered
due to the thickness of the source.

Similar results were found for Xe2+ and Xe3+. Of spe-
cial interest for this last ion is the factor F introduced
in equation (4), which is proportional to the absorption
coefficient (κnk) between levels |k〉 and |n〉. In Figure 4
is shown, as contours levels, that F takes negative val-
ues in the region delimited by Ne . 3 × 1015 cm−3 and
2 eV < kT < 4.25 eV. It is interesting to point out that
for Xe3+, and precisely in this region of the plane Ne−kT
(predicted by our model as a zone of negative absorption),
was experimentally found by Papayoanou et al. [18] that
population inversion occurs.

Concerning with case II, different situations can be
found depending on the given ion. When CT � 1 we can
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Fig. 4. Contour levels for the F factor defined in equation (4),
showing the region of possible population inversion (F < 0) for
Xe3+.

use equations (11, 7) and our equation (9), such that

Q =
1− e−x

x
, (22)

irrespective of the particular x value. For increasing and
positive values of x (proportional to the lower level pop-
ulation) we recover the result known as self-absorption.
However, if x < 0 (for regions where population inversion
occurs), then Q > 1 and

IPeak
nl

IPeak
nk

>

[
IPeak
nl

IPeak
nk

]
LTE

.

As an example of this last situation, Xe+ lines with λ =
5 419 Å and λ = 4 890 Å arising from level (3P)6p[3]5/2 [20]
can be considered where, effectively the line with λ =
5 419 Å shows laser action. Please note that for this par-
ticular case the lower level is not the fundamental one.
The behavior of equation (22) is shown in Figure 5.

7 Conclusions

The present work describes a Collisional Radiative Steady
State model for a system of two excited levels (n, k with
En > Ek), the ionization level I (with energy EI > En)
and the ground level l (with El = 0). Two different situ-
ations were considered. Case I, treating “cascade” transi-
tions n→ k and k → l, found, e.g. in Xe+ between levels
6p → (6s, 5d) → 0. Case II which corresponds to transi-
tions originating in the same upper level, that is n → k,
n→ l. The electronic temperature (T ) and the electronic
density of the plasma (Ne), were used as parameters. Both
cases were treated in the optically thin and optically thick
source limits and the lowering of the ionization limit was
included.
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Fig. 5. Plot of the first order expansion of Q (case II), as
defined in equation (22) for the ion C3+ and for −1 ≤ x ≤ 30.

Main conclusions of this work can be summarized as
follows.

(1) The analysis of figures like 3 and 5 indicate the de-
parture from ideal conditions.

(2) A good qualitative description for the escape factor is
provided by our function CTP (CT , x).

(3) For case I and even for a thin source (x � 1), the
influence of the lowering can be noticed for increas-
ing electron densities, precisely when LTE is expected
to dominate accordingly with canonical assumptions
(see Fig. 3a). For thicker sources, the general trend is
similar but Q is always smaller, as shown in Figure 3b.

(4) Population inversion is predicted by the model for the
same plasma conditions as those found experimentally
by other authors (see Fig. 4).

(5) For case II and for CT � 1 the quotient IPeak
nl /IPeak

nk
its smaller than its ideal value for positive and increas-
ing x, which describes the so-called self-absorption.
The possibility of a reverse situation was analyzed and
included in Figure 5 by extending x to negative values
(the gain region).

(6) The model could be used in plasmas containing more
than one element as pollutant or traces and the ratio
of them is of interest. In this case this is directly given
by comparison of the coefficients α∗∗ of both elements.

(7) From the property

P (CT , x→ 0) = 1/CT

it follows that a source can be considered as thin (up
to a given percent) when the condition

P (CT , x)CT ≈ 1

between the same percentage.

At present we are working in more complete model
which takes into account a greater number of levels of
the ion of interest as well as the previous and subsequent
ionization stages.
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